
Speeding up Collaborative Filtering with Parametrized
Preprocessing

Victor Anthony Arrascue Ayala Anas Alzoghbi Martin Przyjaciel-Zablocki
Alexander Schätzle Georg Lausen

Department of Computer Science
University of Freiburg

Georges-Köhler-Allee 051, 79110 Freiburg, Germany
arrascue|alzoghba|zablocki|schaetzle|lausen@informatik.uni-freiburg.de

ABSTRACT
Collaborative filtering (CF) aims at producing recommen-
dations for a user based on other users of similar taste,
their k-neighbors. Since the computation of the neighbor-
hood dominates the complexity of CF for a large number of
users and ratings, this is done off-line in most commercial
systems. As more and more systems allow users to contin-
uously rate resources, neighborhoods are rapidly outdated
and lose accuracy. Hence, neighborhoods have to be up-
dated more often but traditional approaches do not meet
the speed requirements. Our major contribution in this pa-
per is to present a technique to split the computation of the
neighborhood into an off-line and on-line task. This enables
the system to speed up the on-line computation time up
to 97% in relation to the time required by the state-of-the-
art approach, as our experiments on the MovieLens dataset
demonstrate.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Information
filtering]; H.3.4 [Systems and Software]: [Performance
evaluation (efficiency and effectiveness)]

Keywords
Rec. Systems, RecSPARQL, Collaborative Filtering

1. INTRODUCTION
Collaborative filtering (CF) is a fundamental approach to

deliver recommendations [1]. The first step and pre-requisite
for user-based CF is to find for a user u the top-k most sim-
ilar users, a peer referred to as the neighborhood of u. The
goal is to predict u’s degree of preference for an item i based
on the ratings given by their neighbors. One of the main
problems is that when the number of users and ratings in the

Copyright c© 2015 for this paper by its authors. Copying permitted for
private and academic purposes.
KDD’15, August 10 – 13, 2015, Sydney, Australia.

system is significantly large, computing the neighborhoods
for all users is costly. The item-based variant, which focuses
on finding similar rated items, is more accurate when the
number of users is much greater than the number of items,
but it also suffers from this problem of high-dimensionality.
For this reason, many systems compute the neighborhoods
completely off-line, whereas the recommendations are com-
puted on-line. However, off-line computed neighborhoods
do not meet the requirements of the big data era for two
reasons [8].

First, more and more systems are able to massively cap-
ture users’ behavior and preferences. In this scenario, the
time span in which a user-based neighborhood remains valid
is too short because new users, potential neighbor candi-
dates, and their preferences continuously join the system.
For instance in domains like music users continuously listen
to and rate songs and neighborhoods based on song ratings
rapidly lose their validity. To keep neighborhoods up-to-
date it is possible to recompute them after some interval
of time, but the time required for computing the neighbor-
hoods prevents this approach from being of much practical
use in many cases.

Secondly, given that richer information is available, this
can be used as a means to increase the quality of recommen-
dations. Although a neighborhood based on user ratings is
built out of neighbors which rate similarly, one might want
to consider different kinds of data, preferences or behavior
patterns. However, it is not possible to store off-line neigh-
borhoods for each possible criteria adopted. Flexibility has
been the focus of our research in previous work [3], in which
we propose an extension of the SPARQL query language1

to obtain recommendations from RDF graphs. There, the
query writer can arbitrarily choose which features to con-
sider for computing the neighborhood, and queries with dif-
ferent features can lead to a dynamic computation of the
neighborhoods. In this scenario, an efficient evaluation of
queries has posed a big challenge.

Being aware that no solution can tackle all of the above
mentioned problems, we proposed a strategy to arbitrarily
split the computation of k-neighbors into an off-line and on-
line task which can temporarily satisfy the on-line time re-
quirements, until a significant number of new users and rat-
ings join the system. We adopt the Information Retrieval
(IR) approach for computing CF [4, 7] as the baseline of

1http://www.w3.org/TR/rdf-sparql-query/



our work. Using inverted indexes to evaluate queries effi-
ciently [12], it is possible to alleviate the scalability prob-
lem and to obtain a performance similar to that observed in
ranking tasks [5].

Our paper is structured as follows: We formalize the prob-
lem in Section 2. In section 3 we present our approach. In
section 4 we present the results of our experiments. Finally,
we present the related work in section 5 and our conclusions
in section 6.

2. PROBLEM STATEMENT
Let U = {u1, u2, ..., un} be a set of users, I = {i1, i2, ..., im}

a set of items. The recommender system (RS) collects ex-
plicit ratings r(u, i) from users u ∈ U given to items i ∈
I. The value of a rating is an element of the set S =
{s1, s2, ...sl} which is the rating scale used in the RS. With-
out loss of generality we assume S is a finite set. For exam-
ple, for the five stars rating scale, in which half stars are not
allowed, S = {1, 2, 3, 4, 5}. A user profile is represented as
a vector of ratings:

~vu =< r(u, i1), r(u, i2), ..., r(u, im) >

Let V = {~vu1 , ~vu2 , ..., ~vun} be the set of profiles of all users
from U . The cosine similarity of two user profiles,
cossim(~vux , ~vuy ), is defined as follows:

cossim(~vux , ~vuy ) =

∑m
j=1 vux [j] · vuy [j]

‖~vux‖·‖~vuy‖
, (1)

where vux [j] is the value of the vector at the jth-dimension
and ‖~vux‖ is the L2-norm of vector ~vux and hence:

‖~vux‖=

√√√√ m∑
j=1

(vux [j])2

Let AllNB be the problem of finding top k-neighbors for all
users from U . The naive approach consists in computing
cossim(vux , vuy ) by iterating over all pairs of users and rank-
ing the results for each user. However, this leads to a quadratic
complexity in the size of | U | and for a large number of users
this approach is not feasible. Moreover, given that ratings
are very sparse, a model based on vectors of m dimensions,
the number of items, is not used in practice.

Let Li be a traditional inverted list of an item i ∈ I. Li’s
elements are pairs of users and ratings assigned to item i:

Li : {(ux, r(ux, i)), (uy, r(uy, i)), ..., (uw, r(uw, i))}

To facilitate the retrieval of the lists, these are indexed us-
ing the identifier of an item as the key. Figure 1 shows an
example (A) along with its traditional inverted lists (B).

2.1 K-neighbors based on inverted lists
Modeling the problem using traditional inverted lists al-

lows one to compute the k-neighbors problem and to reach
the state-of-the-art in terms of efficiency and scalability [5].
The algorithm K-neighbors, which is based on [7], uses this
kind of inverted lists to compute the top-k neighbors for a
single user, the active user.

u1
i1

u3

i3

u2

i2

i4

1

5

1

5

1

4

4

5

(A)

Li1: {(u1,1),(u2,1)}
Li2: {(u1,5),(u2,5),(u3,5)}
Li3: {(u2,1)}
Li4: {(u2,4),(u3,4)}

Li1,1: {(u1,1),(u2,1)}
Li2,1: {(u1,5),(u2,5),(u3,5)}
Li3,1: {(u2,1)}
Li4,1: {(u2,4),(u3,4)}
Li1,2: {(u1,2),(u2,2)}
Li2,2: {(u1,10),(u2,10),(u3,10)}
Li3,2: {(u2,2)}
Li4,2: {(u2,8),(u3,8)}

...
Li1,5: {(u1,5),(u2,5)}
Li2,5: {(u1,25),(u2,25),(u3,25)}
Li3,5: {(u2,5)}
Li4,5: {(u2,20),(u3,20)}

Traditional indexing

Scaled indexing

(B)

(C)

Figure 1: (A) Ratings example; (B) Traditional in-
dexing; (C) Scaled indexing.

K-neighbors: cos. similarity based on trad. inverted lists
INPUT: ~vux the profile of active user ux with ID x;

n the number of users; k, the number of neighbors;
L2NORMS array of size n, L2-norms of all ~vu profiles;

OUTPUT: NEAR an array of size k, the k-nearest neighbors.
1: Initialize and allocate COS and NEAR
2: NUM = Numerator1(~vux , n)

#Normalization of NUM
3: for each j index of NUM do
4: COS[j] = NUM [j] / (L2NORMS[x] ∗ L2NORMS[j])
5: end for
6: Sort COS[j] values
7: Insert the highest k values (uy, COS[y])) to NEAR
8: return NEAR

The size of the neighborhood k is given as input. For
the computation, the L2-norm of each user vector is pre-
computed and stored in the static array L2NORMS.
K-neighbors uses the algorithm Numerator1 to compute the
NUM array, which contains in each cell the dot product
between the active user and each other user in the dataset,
i.e. the numerators of formula (1). The NUM array is then
normalized to obtain the cosine similarities, which are stored
in the array COS. Finally, COS is sorted and the first k
cells, which contain those users with the highest similarity
scores are then used to build the NEAR array.

Numerator 1: computes the numerator of the cosine sim-
ilarity between ux and all other users
INPUT: ~vux the profile of active user ux with ID x;

n the number of users.
OUTPUT: NUM array of size n that stores the dot product of
the cossim (numerator) between ~vux and each other user vector.
1: Initialize and allocate NUM
2: for all r(ux, i) ∈ ~vux do
3: retrieve inv. list Li = {(uz, r(uz, i)), ..., (uw, r(uw, i)))}
4: for each user uy and rating r(uy, i) ∈ Li do
5: NUM [y] = NUM [y] + r(ux, i) ∗ r(uy, i)
6: end for
7: end for
8: return NUM

The complexity of K-neighbors clearly depends on two
factors: (1) the number of ratings of the active user, which
determines the number of retrieved lists and (2) the over-
all number of elements of all lists. At the same time, the
number of elements in their lists depends on the popularity
of the rated items. As we will demonstrate in detail in the



next section, it is possible to obtain the desired on-line per-
formance by specifying an off-line task which compacts some
of the ratings in each user profile, and together with these,
the corresponding retrieved lists (line 3 of Numerator1 ).

3. SCALED INDEXING
A good off-line approach reduces the space in which the

on-line algorithm performs so that this can run faster. Our
off-line approach first reduces the number of ratings in each
user profile using a special kind of rating as the criteria, i.e.
the more ratings of this kind a user has, the more informa-
tion is compacted off-line. The result is a single artificial
rating which replaces them all. Secondly, it compacts the
corresponding set of lists. In this way, the on-line algorithm
has to run only on the reduced profiles. This is explained in
detail in the next section.

For the second step, it is necessary to retrieve all the lists
corresponding to the compacted ratings and to make a sin-
gle list out of them. The problem with traditional inverted
list is that these are built for each item without taking the
rating into account. Therefore, we propose a new indexing
technique. Let Li,s be a scaled inverted list, where i ∈ I and
s ∈ S. The elements of the list are:

Li,s : {(ux, r(ux, i) ∗ s), ..., (uw, r(uw, i) ∗ s))} =

Li,s : {(ux, d(ux, i)), ..., (uw, d(uw, i))},

which corresponds to the previously defined list Li in which
each element of the list is scaled by s. The figure 1(C) shows
the scaled inverted lists for the example in (A).

This means that instead of having m traditional inverted
lists, the system maintains m × | S | scaled inverted lists.
This approach has however several advantages. The first
advantage is that it is possible to modify Nominator1 into
a new version which doesn’t require multiplications (line 5):

Numerator 2: modification of Numerator 1 to support
scaled indexes
...
2: for all r(ux, i) ∈ ~vux do
3: retrieve Li,r(ux,i) = {(uz, d(uz, i)), ., (uw, d(uw, i))}
4: for each user uy and rating d(uy, i) ∈ Li,r(ux,i) do
5: NOM [j] = NOM [j] + d(uy, i)
6: end for
7: end for
...

The second advantage is that it is possible to define a
merge operation for the off-line task to compact a set of
lists. Let R = {Lx, ...Lz} be a set of scaled inverted lists.
The merge operator returns a so-called materialized inverted
list M , whose elements are pairs (ux, dsum(ux)), such that
ux is in at least in one list of R and dsum(ux) =

∑
i d(ux, i),

i.e. the sum of all scores found for user ux in all lists in R.
For instance, suppose that in figure 1(A) most of users

have rated item i1 with one star and i2 with five stars. Then
lists Li1,1 and Li2,5 are merged producing the materialized
list M = {(u1, 26), (u2, 26), (u3, 25)}. Merging scaled in-
verted lists can be done without knowing anything about
users’ profiles, whereas the elements of traditional lists have
to be scaled by the user rating before these can be merged.

3.1 Top ratings and off-line computation
Scaled indexing provides an additional degree of freedom,

which didn’t exist in traditional inverted lists, i.e. it en-
ables the defining of a merge operation independent of user

profiles. Thereby, it is possible to implement the off-line
approach which is based in the concept of top ratings, the
criteria used to compact ratings in users’ profiles. This is
defined as follows. Let (i, s) be a pair composed of i ∈ I and
s ∈ S and α the desired number of top ratings. Moreover, let
users : (i, s) → N be a function which counts the number
of users in the dataset who rated i with s. For all i ∈ I and
all s ∈ S it is possible to apply the function users and sort
the results by the returned values. The first α pairs (i, s)
are the top ratings. In practice, top ratings can be easily
obtained by executing a query against the dataset.

The off-line phase iterates over users. To solve the spar-
sity problem of representing user profiles with vectors, our
recommender system stores for each user a set of ratings to
easily retrieve their set of inverted lists. For each user u
their set of ratings is then intersected with the set of top
ratings. If the size of the intersection is at least two, all
inverted lists Li,r(u,i) in the intersection are merged to cre-
ate a new materialized list. For instance, suppose that in
figure 1(A) α = 3 and the top ratings are (i1, 1), (i2, 5) and
(i4, 4). The initial set of ratings of each user is the following:

For u1 : {r(u1, i1) = 1, r(u1, i2) = 5)}
For u2 : {r(u2, i1) = 1, r(u2, i2) = 5, r(u2, i3) = 1, r(u2, i4) = 4}
For u3 : {r(u3, i2) = 5, r(u3, i4) = 4}

Now consider user u2. Three of his ratings r(u2, i1) = 1,
r(u2, i2) = 5 and r(u2, i4) = 4 are top ratings. Therefore, a
new inverted list M ′ is materialized by merging lists Li1,1,
Li2,5 and Li4,4:

M ′ : {(u1, 26), (u2, 42), (u3, 41)}

M ′ has to be retrieved from the set of ratings of u2 and
therefore his initial set of ratings is replaced by:

For u2 : {r(u2, i3) = 1, r(u2, {i1, i2, i4}) = 6.48}

The artificial rating r(u2, {i1, i2, i4}) makes it possible to
retrieve the correct materialized list using a new identifier2

and the value of the rating. The value at which the artificial
rating is set to is:

r(u2, {i1, i2, i4}) =
√
r(u2, i1)2 + r(u2, i2)2 + r(u2, i4)2 ≈ 6.48

The new rating is not only important for the retrieval of the
new list, but also keeps the L2-norm of user u2 unchanged:

Old profile of u2 :
√

12 + 52 + 12 + 42 = 6.55...
New profile of u2 :

√
12 + 6.482 = 6.55...

This guarantees that the reduced profiles do not alter the
results of the cosine similarity metric. Suppose that another
user uy is processed and that the intersection of top ratings
is the same as for u2. It is not necessary to recompute M ′.
Instead, the set of ratings of uy is replaced by the artificial
rating which retrieves that materialized list. This is the rea-
son that considering top ratings is beneficial; these ratings
and their combinations are likely to appear for many users.

2The identifier is made out of the old ratings.
Imagine for instance that the top ratings are
(i1, 1),(i1, 5),(i2, 5),(i2, 4),(i4, 4) and (i4, 1): the combi-
nation of (i1, 1), (i2, 5) and (i4, 4) produces the same value
as (i1, 5), (i2, 4) and (i4, 1).



3.2 Trade-off
Merging the scaled inverted lists into materialized lists al-

lows us to arbitrarily shorten the on-line computation time
of the AllNB problem at the cost of memory consumption.
We show this by considering the extreme cases with re-
spect to parameter α. Let IL be the set of traditional
inverted lists, SL and ML be respectively the scaled in-
verted lists and the materialized lists in our approach. When
α = 0, the number of scaled inverted lists |SL| = |IL|×|S| =
m×|S|, whereas |ML| = 0, i.e. no materialized lists are gen-
erated. The time to solve the AllNB problem is ca. the same
as for the traditional indexing approach, but more memory
is required. However, the extra required memory is an af-
fordable amount in most RS, where the rating scale is cho-
sen to be simple, discrete and limited to just a few values
and therefore | S | is small. On the other hand, as α in-
creases, more materialized lists are generated by merging
more scaled inverted lists off-line, leaving less operations to
the on-line phase and resulting in a fewer cost. When α is
set equal to the number of all existing ratings in the system
the off-line phase will merge all the scaled inverted lists for
each user into one materialized list that contains the results
of the dot products between the active user vector and all
other users’ vectors. This leads to |ML| = n materialized
lists, but even in this case the amount of memory required
is bounded. Moreover, the larger the value to which α is set,
the more ratings are removed from users’ profiles: if | Iu |
is the size of intersected top ratings for user u, | Iu | −1
ratings are removed from his profile. Different values of α
have different impacts in performance as the analysis of the
experiments shows. Although a larger number of top ratings
always results in a shorter computation time for the on-line
task, the speed up is not necessarily uniform.

3.3 New users and new ratings
The pre-processing of top ratings helps in reducing the

computation time for the AllNB problem. However, new
users and new ratings progressively slow down the compu-
tation time, because the number of elements in the scaled
inverted lists increases again. Although a significant num-
ber of users and ratings are required to have a big change in
performance, a new off-line processing might be necessary
at some point in time to speed up the on-line request.

The strategy chosen to deal with this problem is to au-
tomatically run the off-line procedure when the set of top
ratings changes in the system for the same parameter α, i.e
when at least one top rating is replaced by a non-top rating.
To achieve this, artificial ratings have to be split again into
single ratings to search for an intersection with the new set
of top ratings. If the intersection remains the same, then
the set of ratings of that user previous to that split remains
unaltered. Otherwise, a new materialized list is created,
whereas old materialized lists are removed if these are no
longer required by any user. Updates in existing ratings
are not allowed in our system, but this is also not likely to
happen in real scenarios.

4. EXPERIMENTS
The experiments were carried out on the following Movie-

Lens datasets:

• ML100k: the smallest data set. It consists of 100,000
ratings from 943 users on 1,682 movies.

ML100k ML1M

trad. indexing (ms) 1,482 108,311
scaled indexing (ms) 1,230 116,604

Table 1: Time required (ms) for computing AllNB
on-line with α = 0

• ML1M: it contains 1,000,209 ratings from ca. 6,040
users and 3,900 movies.

The rating scale is based on 1-5 stars. Originally, these
datasets do not contain users who rated fewer than 20 movies.
If a user rates a movie more than once, only the last rating
is used. The neighborhood size is set to 20, but this has
only a minimal impact on the computation time, since this
only determines the size of the queue in which the results
are stored but all lists have to be merged anyway.
We run the experiments on a machine with Ubuntu 12.04.5
LTS, a processor Intel(R) Xeon(R) CPU X5667@3.07GHz
with 8 cores and 32 GB of RAM. The initial and maximum
memory allocation pool for the Java Virtual Machine (JVM)
are set respectively to 4 GB and 30 GB.

The recommender system is implemented on top of the
Sesame3 triple store, but it could have been easily integrated
on top of any data layer as it simply queries the data inter-
face to obtain the ratings. In our case this is achieved by
means of SPARQL queries. The RDF repository stores the
data in-memory. We opt for an in-memory storage in order
to speed up the query evaluation and therefore the time re-
quired for building the inverted lists, even if this reduces the
amount of memory available for the neighborhoods’ compu-
tation. We implemented both approaches for building the
inverted lists, i.e. the traditional indexing and scaled index-
ing approach. Both kinds of lists are also maintained in-
memory and their indexes used for the retrieval are stored
in a hash map. In the case of the traditional inverted lists
the key is the ID of an item, whereas for scaled indexing a
hash function returns a key based on both the item ID and
the rating. For each user their set of ratings is also stored in-
memory. In this way, each corresponding list can be rapidly
retrieved as described in the K-neighbors algorithm.

On each experiment the neighborhoods for all users (AllNB)
are computed. For scaled indexing in addition to the input
data, the number of top ratings to be pre-processed, α, has
to be specified. We incrementally increase α on each new ex-
periment. When α reaches ca 10% of the ratings, we proceed
with a larger dataset. We repeat one experiment several
times to obtain reliable execution times. For ML100k the
number of repetitions for each experiment is 10, for ML1M
it is 5. We then compute the avg. computation time for the
off-line and on-line tasks. We also keep track of the number
of built inverted lists, the number of removed ratings from
the users’ profiles and the memory usage. These metrics are
reported for chosen values of α in table 2.

The results obtained for α = 0 are shown in table 1. Al-
though the scaled indexing approach does not require multi-
plications, this is advantageous only for the smallest dataset.
Since the hash map which stores the scaled inverted lists is
five times larger than that of the traditional indexing, the
slightly worse performance is due to the more expensive re-
trieval of lists: probing a list which is based not only on

3Version: 2.7.14, http://rdf4j.org/



101 102 103

0

500

1,000

1,500

(A) #Pre-processed top ratings

T
im

e
in

m
s

NB

TR

SUM

S

101 102 103 104 105

0

0.5

1

1.5
·105

(B) #Pre-processed top ratings

T
im

e
in

m
s

NB

TR

SUM

S

101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

(C) Parameter α

b
en

(α
) ML100K

ML1M

Figure 2: Computation times on (A) ML100k and (B) ML1M of AllNB on-line (NB), off-line top ratings
pre-processing (TR), NB + TR (SUM), state-of-the-art (S). (C) shows the benefit of the parameter α.

the ID of an item but also on the scale factor s requires a
hash function based on more operations. Moreover, saving a
significant number of multiplications for the AllNB problem
does not necessarily lead to a large impact in performance.
For instance, a modern CPU can execute ca. 4 double float-
ing point operations per cycle. The removed multiplications
should be in the order of millions just to obtain one second
of improvement.

Figures 2(A) and (B) depict the computation time re-
quired for computing the neighborhoods on-line (NB) in
the first two datasets. Since the off-line procedure is only
required once, the time needed for computing the neigh-
borhoods on-line can be drastically reduced. For instance
for ML1M, the computation with the traditional approach
required ca. 108,000 msecs, but with scaled indexing and
α = 10, 000 (ca 1% of the overall ratings), it was possible to
reduce this to ca. 5,400 msecs, which corresponds to 5% of
the original time. Interestingly, when α was increased from
this point on, the benefit of pre-processing additional top
ratings does not pay off well. For instance, for α = 100, 000
(ca 10% of the overall ratings), the time is reduced to ca.
4,200 msecs, i.e 3.8% of the original time.

Figures 2(A) and (B) also illustrate the cost of the off-line
procedure to process top ratings (TR) in terms of computa-
tion time. The sum of the off-line and on-line computation
time for the neighborhoods (SUM) is worse than time re-
quired by the traditional approach. This is due to the work
of sorting the additional materialized lists by user ID, which
is a pre-requisite for merging lists efficiently. A larger hash
map has also to be resized more times.

Figure 2(C) shows the benefit of each parameter α. This
is calculated as follows:

ben(α) = 1/2 ∗
(
rm

rat
+
tti − tsi
tti

)
where rm is the overall number of removed ratings in the
dataset, rat is the overall number of ratings in the system.
On the second member of the sum we have tti and tsi, which
are respectively the on-line computation time required by
the traditional indexing and scaled indexing approach.

The figure suggests that for both datasets, ML100k and
ML1M the benefit rises up when α > 102. As α increases,
the benefit grows for ML100k constantly, whereas for ML1M
the benefit start to decrease when α = 104. The overall

α 0 10 100 1000 10000

ML100k
NB (ms) 1230 1212 1052 455 −
# scal. lists 8410 8410 8410 8410 −
# mat. lists 0 295 920 943 −
# rem. rat. 0 1410 12607 58657 −
Mem. (MB) 5.72 8.19 14.77 15.49 −

ML1M
NB (ms) 116604 117590 109351 57785 5408
# scal. lists 18530 18530 18530 18530 18530
# mat. lists 0 762 5824 6034 6040
# rem. rat. 0 10546 84761 397219 959488
Mem. (MB) 57.23 99.47 412.02 448.63 457.09

Table 2: Metrics for chosen parameters α

impact in performance for AllNB depends on the ratings
distribution, but even with a uniform distribution the results
have a large impact in performance.

5. RELATED WORK
A traditional way of classifying CF algorithms is by divid-

ing them into memory-based and model-based algorithms [1].
In this work we adopt a memory-based approach, because
models lose accuracy rapidly and are not able to satisfy the
quality requirement when new users and ratings continu-
ously join the system. Approaches based on Information
Retrieval are well researched and have been able to satisfy
the performance and scalability needs for search in the web.
Therefore much effort has been undertaken to bridge these
two paradigms [5, 13]. In [7] Cöster et al. propose the use
of a disk-based inverted file structure. The authors first
describe different algorithms in a suitable form for informa-
tion retrieval (IR) and then combine this with two IR ter-
mination heuristics, Quit and Continue. These algorithms
are not suitable for our proposed indexing strategy, mainly
due to the metrics, e.g. Pearson Correlation, which use the
average of users’ ratings, for which a re-engineering of our
approach might be possible. In [4] Bayardo et al. propose
a new indexing strategy for solving the all-pairs similarity
search problem, which is a generalization of the k-neighbors
problem. In this approach indexes are built dynamically
and they use a threshold t to reduce the amount of infor-
mation indexed and to compute bounds for the dot product.



Although the work alleviates the scalability problem, the all-
pairs algorithm has to be fully computed on-line. Inverted
index structures can be used to implement clustering strate-
gies too. In [2] Altingovde et al. design a cluster-skipping
inverted index to store clusters. Individual search is thus
enabled in single clusters without too much degradation in
the efficiency. This allows them to reduce the neighborhood
formation time by up to 60%. However, it is not possible
to have a parametrized reduction. Our approach is similar
to incremental approaches such as the strategy proposed by
[10] Papagelis et al., designed to deliver results faster while
keeping the same accuracy in the recommendations. Addi-
tionally, more and more effort has been expended to imple-
ment these strategies in new processing paradigms, such as
stream processing systems [6, 8], map-reduce [14, 9], or even
in specific-purpose hardware [11]. There are many other ap-
proaches based on approximations, but in most of the cases
these have a negative impact on the quality of the recom-
mendations.

6. CONCLUSION AND FUTURE WORK
The efficiency of the neighborhoods computation is one of

the weakest point of CF-based recommendations. We pro-
pose, therefore, a strategy to split it into an off-line and
on-line task. The goal of the off-line task is to reduce the
sizes of the users’ profiles by compacting a set of ratings
considered to be top ratings. This triggers the merging of
sets of lists which materializes partial results. The off-line
process is parametrized by the number of top ratings α. Re-
sults obtained in our experiments show that it is possible
to reduce the on-line computation time up to 97% with re-
spect to the traditional approach. We therefore conjecture
that top ratings are a good strategy to set the workload of
a partial computation of k-neighbors. The off-line computa-
tion is performed at the cost of memory usage. However, to
overcome memory deficiencies in larger datasets, we might
in the future store part of the inverted lists, e.g. the ma-
terialized lists, in disk, avoiding the storing of all lists in-
memory as in our experimental setting. Our approach can
be easily extended to item-based CF for which we need to
assess if a symmetric definition of top ratings, top raters,
would be equally useful in reducing the item profiles. As
another future direction of our research, we would like to
extend our approach to other CF-IR compatible algorithms
and metrics and to investigate the impact on the quality of
recommendations. For instance, in Inverse User Frequency,
items with a high number of ratings are penalized with lower
weights. A similar approach could be easily integrated into
our method, because each materialized list is already a com-
bination of popular items whereas the weight could be cho-
sen to depend on the number of merged lists a materialized
list is made of. Moreover, the use of pruning heuristics such
as Quit or Continue or even compression techniques are also
applicable in our approach and could help to further speed-
up the computation time.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[2] I. S. Altingövde, Ö. N. Subakan, and Ö. Ulusoy.
Cluster searching strategies for collaborative

recommendation systems. Inf. Process. Manage.,
49(3):688–697, 2013.

[3] V. A. A. Ayala, M. Przyjaciel-Zablocki, T. Hornung,
A. Schätzle, and G. Lausen. Extending sparql for
recommendations. In Proceedings of Semantic Web
Information Management on Semantic Web
Information Management, SWIM’14, pages 1:1–1:8,
New York, NY, USA, 2014. ACM.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proceedings of the 16th
International Conference on World Wide Web, WWW
2007, Banff, Alberta, Canada, May 8-12, 2007, pages
131–140, 2007.

[5] A. Belloǵın, J. Wang, and P. Castells. Bridging
memory-based collaborative filtering and text
retrieval. Inf. Retr., 16(6):697–724, 2013.

[6] B. Chandramouli, J. J. Levandoski, A. Eldawy, and
M. F. Mokbel. Streamrec: a real-time recommender
system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011,
pages 1243–1246, 2011.

[7] R. Cöster and M. Svensson. Inverted file search
algorithms for collaborative filtering. In SIGIR 2002:
Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, August 11-15, 2002, Tampere,
Finland, pages 246–252, 2002.

[8] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu.
Tencentrec: Real-time stream recommendation in
practice. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 227–238, 2015.

[9] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient
processing of k nearest neighbor joins using
mapreduce. CoRR, abs/1207.0141, 2012.

[10] M. Papagelis, I. Rousidis, D. Plexousakis, and
E. Theoharopoulos. Incremental collaborative filtering
for highly-scalable recommendation algorithms. In
Foundations of Intelligent Systems, 15th International
Symposium, ISMIS 2005, Saratoga Springs, NY, USA,
May 25-28, 2005, Proceedings, pages 553–561, 2005.

[11] H. Shu, R. Yu, W. Jiang, and W. Yang. Efficient
implementation of k-nearest neighbor classifier using
vote count circuit. IEEE Trans. on Circuits and
Systems, 61-II(6):448–452, 2014.

[12] T. Strohman, H. R. Turtle, and W. B. Croft.
Optimization strategies for complex queries. In SIGIR
2005: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, Salvador,
Brazil, August 15-19, 2005, pages 219–225, 2005.

[13] J. Wang, A. P. de Vries, and M. J. T. Reinders.
Unified relevance models for rating prediction in
collaborative filtering. ACM Trans. Inf. Syst., 26(3),
2008.

[14] T. Warashina, K. Aoyama, H. Sawada, and
T. Hattori. Efficient k-nearest neighbor graph
construction using mapreduce for large-scale data sets.
IEICE Transactions, 97-D(12):3142–3154, 2014.


